ANDREW K. SAYDJARI

Graduate Student | Harvard Physics

andrew-saydjari.github.io | andrew.saydjari@cfa.harvard.edu | he/him/his

RESEARCH INTERESTS

I work at the interface of **data science** and **astrophysics**, developing new statistical tools to analyze large datasets. In terms of methods, I am intrigued by the low-SNR limit, **uncertainty quantification**, and blind signal separation problems. In terms of astrophysics, I strive to better understand the **chemistry** of **interstellar dust**.

EDUCATION

Harvard University: PhD in Physics Advisor: Douglas Finkbeiner	2018-2024
Thesis: Statistical Models of the Spatial and Chemical Complexity of Dust	2014 2019
Yale University: BSc/MSc in Chemistry, BSc in Mathematics Thesis: Optimizing the Nickel-Catalyzed Carboxylation of Aryl Halides	2014-2018
SELECTED AWARDS & HONORS	
Best Astrostatistics Student Paper Award (ASA/AIG)	2022
Bok Center Certificate of Distinction in Teaching (Harvard)	Fall 2021
NSF Graduate Research Fellowship (USA)	2018
Hertz Fellowship Finalist	2018, 2019
Howard Douglass Moore Prize (Yale), Chemistry's highest honor, awarded to a single gradu	0
Barry Goldwater Scholar (USA)	2017
Phi Beta Kappa	2017
DAAD-RISE Fellowship (Yale/Germany), Research internship exchange	2016
PROFESSIONAL ACTIVITIES & SERVICE	
Harvard Astronomy Department	
(1/2) Student Representatives to Faculty Search Committee (Elected)	Jan - Mar 2023
Organizer for Student Faculty Forum (StuFF)	2022 - 2023
Institute for Artificial Intelligence and Fundamental Interactions (IAIFI)	
Computing Committee	June 2022-present
American Astronomical Society	
Chambliss Poster Judge (AAS 240, AAS 241)	June 2022-present
Manuscript Referee	
American Astronomical Society Journals (ApJ)	2023-present

PUBLICATIONS

I am an author on **19+ papers** that have **441+** citations (h-index=11). This includes: **8+ papers** as **(co-)lead author** with 194+ citations

5+ papers with significant contributions with 197+ citations

See my <u>Publication List</u> for details. My ORCID is <u>0000-0002-6561-9002</u>. Most of my papers can be found online on <u>ADS</u>, though citations outside astronomy are missing.

SUPERVISION & MENTORSHIP

I have (co-)supervised/mentored 4 students:

Graduate

1. Ana Sofía Uzsoy (Astronomy, Harvard) Component Separation of Lyman Alpha Emitters in DESI (w/ Doug Finkbeiner) Fall 2022-Present

Undergraduate	
3. Stephanie Yoshida (Astronomy, Harvard)	Fall 2023-Present
Kinetic Tomography of the Intermediate Velocity Arch (w/ Catherine Zucker & Doug	; Finkbeiner)
2. Devisree Tallapaneni (Physics & Statistics, Cornell)	Summer 2023-Present
Quantifying the Filamentary ISM: Statistical Reconstructions of Reality (w/ Eric Koch	& Doug Finkbeiner)
1. Ken Michalek (Computer Science, Harvard Extension School \rightarrow MIT Lincoln Lab)	2020-2021
Online Blind Deconvolution for Educational Astronomy (w/ Dominic Pesce & Allyson	n Bieryla)

TEACHING

I care passionately about teaching and love ideating new ways of explaining difficult concepts. I emphasize the development of hands-on teaching methods, incorporating active learning through experiment and data-based exploration. I view creating an inclusive atmosphere, in which all students can comfortably learn, as a top priority.

exploration. I view creating an inclusive autosphere, in which an students can connortably really, as a top priority.	
Harvard University, Teaching Fellow	Fall 2021
Solid State Physics, Lecture, Undergrad/Grad, 27 students, w/Prof. Julia Mundy	
Feedback: <u>Student Evaluations</u>	
Yale University, Peer Tutor	2015-2018
Physical Chemistry, Lab, Undergrad, 30 students, w/Prof. Patrick Vaccaro	
Physical Chemistry II, Lecture, Undergrad, 30 students, w/Prof. Patrick Vaccaro	
Freshman Organic Chemistry II, Lecture, Undergrad, 100 students, w/Prof. Alanna Schepartz	
Sophomore Organic Chemistry I, Lecture, Undergrad, 120 students, w/Prof. Jonathan Ellman	
SPLASH/SPROUT @ Yale, Middle School	2015-2018
Peeling Back the Layers of Solar Cells (30 students), Metal Mania: Simple Models of the Material World (4	
students), Destressing Tensors (7 students), Abstract Algebra: Questions Teachers Didn't Answer (60, 75	
students), Origins of Life: A Chemist's Perspective (16, 35 students)	

SELECTED PRESENTATIONS

I have given 25+ public science talks . See my <u>Talk List</u> for more details. Highlights include:	
Invited Conference Talks JSM 2022: Astrostatistics Interest Group: Student Paper Award Photometry on Structured Backgrounds: Local Pixelwise Infilling by Regression	August 2022
Contributed Conference Talks Sloan Digital Sky Survey V (SDSS-V) Collaboration Meeting A New MWM Pipeline: Separating APOGEE Spectra into Components	August 2023
Statistical Challenges in Machine Learning and Astrophysics (SCMA) VIII Measuring the 8621 Å Diffuse Interstellar Band in Gaia DR3 RVS Spectra: Obtaining a Clean Catalog by Marginalizing over Stellar Types	June 2023
RAS Specialist Discussion: 1D ML Measuring the 8621 Å Diffuse Interstellar Band in Gaia DR3 RVS Spectra	March 2023
DECam at 10 Years Workshop The Dark Energy Camera Plane Survey 2 (DECaPS2): More Sky, Less Bias, and Better Uncertainties	September 2022
AAS 240: Computation, Data Handling, Image Analysis The DECam Plane Survey (DECaPS2): Optical photometry of 3.3 billion stars in the southern Galactic plane	June 2022
Seminars, Lunch Talks, & Journal Clubs UWSeattle: Astro Lunch Probabilistic Component Separation: Deconstructing Photometric and Spectroscopic Pipelines	April 2023
University of Toronto: Statistics and MachIne LEarning (SMILE) Journal Club Photometry on Structured Backgrounds	February 2022

IAS: Pan-Experiment Galactic Science Group

Learning from ISM Texture using the Wavelet Scattering Transform

LPENS: AstroLunch

Scattering Transform Methods: Applications to Galactic Dust

OUTREACH & ENGAGEMENT

Public Science Writing

MathStatsBites: TheSequencer, CycleStarNet, SCMA8, NestedSampling	2022-2023
LightSound Workshop, Soldering Solar Eclipse Sonification Instruments	Summer 2023
Cambridge Science Festival, MIT Museum Presentation Volunteer	Fall 2022
Latino Initiative Program, Instructor	Summer 2021- Summer 2023
Harvard Observation Project, Software Mentor	2020-2021
·	

PRESS

DECaPS2 Release: WSJ, Wired, AP, CNN, Register, Salon, Forbes, Space.com, AAS NovaJanuary 2023Grad Student Highlight: LabrootsNovember 2022Machine Learning & Interstellar Dust Clouds: Abstract: The Future of ScienceDecember 2020

SELECTED RESEARCH SKILLS

Computational

I am a strong advocate of both open-source code and data, and I insist on public reproducibility of all plots in my work (see <u>my Zenodo</u> deposits accompanying my papers).

Developer: Julia (3 years, primary), Python (7 years), MATLAB (3 years) [Github] Developed pipelines and managed >100k core-h runs in both Julia and Python

Managed daily simultaneous multi-instrument measurements in MATLAB Public Packages: LowRankOps.jl, KryburyCompress.il, CloudCovErr.jl, CloudClean.jl, EqWS.jl, crowdsource

Laboratory

Fabrication: EBL, RIE, ALD, Photolithography, Thermal/E-beam/Sputtering Deposition Characterization: (S)TEM/EDX, FIB, SEM, AFM Spectroscopy: Terahertz-Time Domain, SPR, XPS, NMR (1H, 13C, 31P, NOSEY), EPR

July 2021

December 2020